
VERT.X
A 	TOOLK IT 	 TO 	BU I LD 	D I STR IBUTED
REACT IVE 	 SYSTEMS
	

CLEMENT	ESCOFFIER

Vert.x	Core	Developer,	Red	Hat

VERT.X 	I S 	 A 	TOOLK IT 	TO 	BU I LD
DISTR IBUTED 	 AND 	REACT IVE
APPL ICAT IONS 	ON 	 TOP 	OF 	 THE 	JVM
US ING 	AN 	ASYNCHRONOUS 	NON-
BLOCK ING 	DEVELOPMENT 	MODEL .

TOOLKIT
Vert.x	is	a	plain	boring	jar
Vert.x	components	are	plain	boring	jars
Your	application	depends	on	this	set	of	jars	(classpath,	fat-
jar,	...)

DISTRIBUTED
“ 	You	know	you	have	a	distributed	system	when	the	crash
of	a	computer	you've	never	heards	of	stops	you	from	getting
any	work	done.”	(Leslie	Lamport)

DISTRIBUTED
“ 	You	know	you	have	a	distributed	system	when	the	crash
of	a	microservice	you've	never	heards	of	stops	you	from
getting	any	work	done.”	
(Everyone	having	developed	microservices)

REACTIVE	SYSTEMS
Responsive	-	they	respond	in	an	acceptable	time
Elastic	-	they	scale	up	and	down
Resilient	-	they	are	designed	to	handle	failures	gracefully
Asynchronous	-	they	interact	using	async	messages

http://www.reactivemanifesto.org/

http://www.reactivemanifesto.org/

REACTIVE	SYSTEMS	!=
REACTIVE	PROGRAMMING

REACTIVE	SYSTEMS	+
REACTIVE	PROGRAMMING

POLYGLOT
Vert.x	applications	can	be	developed	using

Java
Groovy
Ruby	(JRuby)
JavaScript	(Nashorn)
Ceylon
Scala
Kotlin

VERT.X
A	toolkit	to	build	reactive	distributed	systems	&

microservices

A	TOOLKIT	TO

Build	distributed	systems:

Do	not	hide	the	complexity
Failure	as	first-class	citizen
Provide	the	building	blocks,	not	an	all-in-one	solution

Build	microservice	systems:

Asynchronous
Location	transparency
Resilience	patterns
Simple	deployment	&	management

WHAT	DOES	VERT.X
PROVIDE	?
TCP,	UDP,	HTTP	1	&	2	servers	and	clients
(non-blocking)	DNS	client
Clustering
Event	bus	(messaging)
Distributed	data	structures
(built-in)	Load-balancing
(built-in)	Fail-over
Pluggable	service	discovery,	circuit-breaker
Metrics,	Shell

REACTIVE
Build	reactive	distributed	systems	/	microservices:

Responsive	-	fast,	is	able	to	handle	a	large	number	of
events	/	connections
Elastic	-	scale	up	and	down	by	just	starting	and	stopping
nodes,	round-robin
Resilient	-	failure	as	first-class	citizen,	fail-over
Asynchronous	message-passing	-	asynchronous	and	non-
blocking	development	model

ASYNCHRONOUS	&	NON-
BLOCKING

ASYNCHRONOUS	&	NON-
BLOCKING
// Synchronous development model
X x = doSomething(a, b);

// Asynchronous development model - callback variant
doSomething(a, b, // Params
 ar -> { // Last param is a Handler<AsyncResult<X>>
 // Result handler
 });

// Asynchronous development model - RX variant
Single<X> single = rxDoSomething(a, b);
single.subscribe(
 r -> { /* Completion handler */ });

REQUEST	-	REPLY
INTERACTIONS

HTTP,	TCP,	RPC...

VERT.X	HELLO	WORLD
Vertx vertx = Vertx.vertx();
vertx.createHttpServer()
 .requestHandler(request -> {
 // Handler receiving requests
 request.response().end("World !");
 })
 .listen(8080, ar -> {
 // Handler receiving start sequence completion (AsyncResult)
 if (ar.succeeded()) {
 System.out.println("Server started on port "
 + ar.result().actualPort());
 } else {
 ar.cause().printStackTrace();
 }
 });

VERT.X	HELLO	WORLD
Invoke

EVENT	LOOPS

VERT.X	ASYNC	WEB	CLIENT
client.get(SERVICE_PORT, SERVICE_HOST, "/")
 .send(ar -> {
 if (ar.failed()) {
 // Something bad happened
 } else {
 String body = ar.result().bodyAsString();
 }
 });

CHAINED	HTTP	REQUESTS

	 Invoke

SERVICE	DISCOVERY
Locate	the	services,	environment-agnostic

SERVICE	DISCOVERY
HttpEndpoint.rxGetWebClient(discovery,
 svc -> svc.equals("vertx-http-server"))
 .subscribe(client -> {
 client.get("/").send(ar -> {
 String body = ar.result().bodyAsString();
 });
 });

MESSAGING
The	eventbus	-	the	spine	of	Vert.x	applications...

THE	EVENT	BUS
The	event	bus	is	the	nervous	system	of	vert.x:

Allows	different	components	to	communicate	regardless
the	implementation	language	and	their	location
whether	they	run	on	vert.x	or	not	(using	bridges)

Address:	Messages	are	sent	to	an	address
Handler:	Messages	are	received	by	Handlers.

POINT	TO	POINT

vertx.eventBus().send("address", "message");
vertx.eventBus().consumer("address", message -> {});

PUBLISH	/	SUBSCRIBE

vertx.eventBus().publish("address", "message");
vertx.eventBus().consumer("address", message -> {});

REQUEST	/	RESPONSE

vertx.eventBus().send("address", "message", reply -> {});
vertx.eventBus().consumer("address",
 message -> { message.reply("response"); });

DISTRIBUTED	EVENT	BUS
The	event	bus	is	distributed	on	all	the	cluster	members

Almost	anything	can	send	and	receive	messages

DISTRIBUTED	EVENT	BUS
Let's	have	a	java	(Vert.x)	app,	and	a	node	app	sending	data
just	here:

DISTRIBUTED	EVENT	BUS

EVENTBUS	CLIENTS	AND
BRIDGES
Bridges

SockJS:	browser,	node.js
TCP:	languages	/	systems	able	to	open	a	TCP	socket
Stomp
AMQP
Apache	Camel

Clients:

Go,	C#,	C,	Python,	Swift...

RELIABILITY
PATTERNS
Don't	be	fool,	be	prepared	to	fail

MANAGING	FAILURES
Distributed	communication	may	fail

AsyncResult	lets	us	manage	these	failures:
doSomethingAsync(param1, param2,
 ar -> {
 if (ar.failed()) {
 System.out.println("D'oh, it has failed !");
 } else {
 System.out.println("Everything fine ! ");
 }
});

MANAGING	FAILURES
Distributed	communication	may	fail

Single / Observable	let	us	manage	these	failures:
doSomethingAsync(param1, param2)
 .subscribe(
 r -> System.out.println("Everything fine ! "),
 e -> System.out.println("D'oh, it has failed !")
);

MANAGING	FAILURES
Adding	timeouts
vertx.eventbus().send(..., ...,
 new DeliveryOptions().setSendTimeout(1000),
 reply -> {
 if (reply.failed()) {
 System.out.println("D'oh, he did not reply to me !");
 } else {
 System.out.println("Got a mail " + reply.result().body());
 }
});

CIRCUIT	BREAKER

CIRCUIT	BREAKER
cb.executeWithFallback(future -> {
 // Async operation
 client.get("/").send(response -> {
 if (response.failed()) {
 future.fail(response.cause());
 } else {
 future.complete("Hello " + response.getResult().bodyAsString());
 }
 }),
 // Fallback
 t -> "Sorry... " + t.getMessage() + " (" + cb.state() + ")"
)
 // Handler called when the operation has completed
 .setHandler(content -> /* ... */);

CIRCUIT	BREAKER

	 Invoke

VERTICLE	FAIL-OVER
In	High-Availability	mode,	verticles	deployed	on	a	node	that
crashes	are	redeployed	on	a	sane	node	of	the	cluster.

VERTICLE	FAIL-OVER
Invoke

ELASTICITY
PATTERNS

Be	prepared	to	be	famous

ELASTICITY	PATTERNS

BALANCING	THE	LOAD
When	several	consumers	listen	to	the	same	address,	Vert.x
dispatches	the	sent	messages	using	a	round	robin.

So,	to	improve	the	scalability,	just	spawn	a	new	node!

BALANCING	THE	LOAD

BALANCING	THE	LOAD
Invoke

SCALING	HTTP

THIS	IS	NOT	THE
END();

But	the	first	step	on	the	Vert.x	path

REACTIVE	SYSTEMS	+
REACTIVE	PROGRAMMING

@clementplop

@vertx_project

THANK	YOU!

https://twitter.com/clementplop
https://twitter.com/vertx_project

