- redhat

VERT.X

A TOOLKIT TO BUILD DISTRIBUTED
REACTIVE SYSTEMS

CLEMENT ESCOFFIER

Vert.x Core Developer, Red Hat

VERT.X IS A TOOLKITTO BUILD
DISTRIBUTED AND REACTIVE
APPLICATIONS ON TOP OF THE JVM
USING AN ASYNCHRONOUS NON-
BLOCKINGDEVELOPMENT MODEL.

TOOLKIT

e Vert.x is a plain boring jar

e Vert.x components are plain boring jars

e Your application depends on this set of jars (classpath, fat-
jar, ...)

Vert.x Web,

These slides Vert.x Hazelcast

¥ & Vert.x and its

g 3 (dependencies
é -

JAR

-
y
—

(I

DISTRIBUTED

¢¢ You know you have a distributed system when the crash
of a computer you've never heards of stops you from getting
any work done.” (Leslie Lamport)

DISTRIBUTED

¢¢ You know you have a distributed system when the crash
of a microservice you've never heards of stops you from
getting any work done.”

(Everyone having developed microservices)

REACTIVE SYSTEMS

e Responsive - they respond in an acceptable time

e Elastic - they scale up and down
e Resilient - they are designed to handle failures gracefully

e Asynchronous - they interact using async messages
http://www.reactivemanifesto.org/

http://www.reactivemanifesto.org/

REACTIVE SYSTEMS I=
REACTIVE PROGRAMMING

Dynamic & Autonomic

Functional Reactive

; Systems
Programming “showing a response :

to a stimulus’

Actor [/ Agent
/ / Systems

Reactive Reactive
Prograrnynlng Systems

Stream Component

(Data, Error, End) (Message, Failure, Load)

REACTIVE SYSTEMS +
REACTIVE PROGRAMMING

Reactive
“showing a response
to a stimulus’

Reactive Reactive
Programming Systems
Reactive }

The sequence of Systems using Responsiveness,
messages 1is a Reactive Resilience,
stream Programming Elasticity,

Asynchronous

POLYGLOT

Vert.x applications can be developed using

e Java

e Groovy

e Ruby (JRuby)

e JavaScript (Nashorn)
e Ceylon

e Scala

e Kotlin

VERT.X

A toolkit to build reactive distributed systems &
microservices

A TOOLKITTO

Build distributed systems:

e Do not hide the complexity
e Failure as first-class citizen
e Provide the building blocks, not an all-in-one solution

Build microservice systems:

e Asynchronous

e Location transparency

e Resilience patterns

e Simple deployment & management

WHAT DOES VERT.X
PROVIDE ?

e TCP,UDP,HTTP 1 & 2 servers and clients

e (non-blocking) DNS client

e Clustering

e Event bus (messaging)

e Distributed data structures

e (built-in) Load-balancing

e (built-in) Fail-over

e Pluggable service discovery, circuit-breaker
e Metrics, Shell

REACTIVE

Build reactive distributed systems / microservices:

e Responsive - fast, is able to handle a large number of
events / connections

e Elastic - scale up and down by just starting and stopping
nodes, round-robin

e Resilient - failure as first-class citizen, fail-over

e Asynchronous message-passing - asynchronous and non-
blocking development model

ASYNCHRONOUS & NON-
BLOCKING

- —= - ="

P
S T R ¢)B\
S S = © ‘F—j
time

= -

X
<
%éiv
~
-

ASYNCHRONOUS & NON-
BLOCKING

X x = doSomething(a, b);

doSomething(a, b,
ar -> {

1);

Single<X> single = rxDoSomething(a, b);
single.subscribe(

r->{ 1;

REQUEST - REPLY
INTERACTIONS

HTTP, TCP, RPC...

VERT.X HELLO WORLD

Vertx vertx = Vertx.vertx();
vertx.createHttpServer()
.requestHandler(request ->{

request.response().end("World !");

})
listen(8080, ar ->{

if (ar.succeeded()) {
System.out.printin("Server started on port "
+ ar.result().actualPort());
} else {
ar.cause().printStackTrace();

1;

VERT.X HELLO WORLD

EVENT LOOPS

Get next event
Find interested handle
dispatch the event

Providers

VERT.X ASYNC WEB CLIENT

client.get(SERVICE_PORT, SERVICE_HOST, "/")
.send(ar -> {
if (ar.failed()) {

} else {
String body = ar.result().bodyAsString();

}
1);

CHAINED HTTP REQUESTS

s e | 2 |] 1|

. Web
Alax
J client

SERVICE DISCOVERY

Locate the services, environment-agnostic

Service ookup
Provider Tist/
Pubh‘sh\
. >
l«)lthdmbo | — [mport
o é \
e’

Service ~ g Byi dge\
Registry

Servi ce
Consumer

o
o

SERVICE DISCOVERY

HttpEndpoint.rxGetWebClient(discovery,
svc -> svc.equals("vertx-http-server"))
.Subscribe(client -> {

client.get("/").send(ar -> {
String body = ar.result().bodyAsString();

MESSAGING

The eventbus - the spine of Vert.x applications...

THE EVENT BUS

The event bus is the nervous system of vert.x:

e Allows different components to communicate regardless

= the implementation language and their location
= whether they run on vert.x or not (using bridges)

e Address: Messages are sent to an address
e Handler: Messages are received by Handlers.

POINT TO POINT

—>>
:—? >

=
Consumer g @hb_b
Sender \

7

Event Bus

vertx.eventBus().send("address", "message");

vertx.eventBus().consumer("address", message -> {});

PUBLISH / SUBSCRIBE

XN —>

e —bg

Dby

V

Consumer

Sender

Consumer

7

Event Bus

vertx.eventBus().publish("address", "message");

vertx.eventBus().consumer("address", message -> {});

REQUEST / RESPONSE

N —=>
R—>

N A
Consumer % @h—&.>
‘Sender \

A

Event Bus

vertx.eventBus().send("address", "message", reply -> {});
vertx.eventBus().consumer("address",

message -> { message.reply("response"); });

DISTRIBUTED EVENT BUS

The event bus is distributed on all the cluster members

Almost anything can send and receive messages

DISTRIBUTED EVENT BUS

Let's have a java (Vert.x) app, and a node app sending data
just here:

DISTRIBUTED EVENT BUS

Java
Publisher

EVENTBUS CLIENTS AND
BRIDGES

Bridges

SockJS: browser, node.js

TCP: languages / systems able to open a TCP socket
Stomp

AMQP

Apache Camel

Clients:

e Go, C#, C, Python, Swift...

RELIABILITY
PATTERNS

Don't be fool, be prepared to fail

MANAGING FAILURES

Distributed communication may fail

AsyncResult lets us manage these failures:

doSomethingAsync(param1, paramz2,
ar -> {
if (ar.failed()) {
System.out.printin("D'oh, it has failed !");

} else {
System.out.printin("Everything fine ! ");

MANAGING FAILURES

Distributed communication may fail

Single / Observable let us manage these failures:

doSomethingAsync(param1, param?2)
.subscribe(

r -> System.out.printin("Everything fine !"),
e -> System.out.printin("D'oh, it has failed !")

);

MANAGING FAILURES

Adding timeouts

vertx.eventbus().send(
DeliveryOptions().setSendTimeout(
reply -> {
if (reply.failed()) {
System.out.printin("D'oh, he did not reply to me !");

} else {
System.out.printin("Got a mail " + reply.result().body());

CIRCUIT BREAKER

#failures > threshold

Keep tYOCk | /_é | Call fallback
of Failt»”' immediately
Open

Attempt
Failed !
oK | Half
Open.

CIRCUIT BREAKER

cb.executeWithFallback(future -> {

client.get("/").send(response -> {
if (response.failed()) {
future.fail(response.cause());
} else {
future.complete("Hello " + response.getResult().bodyAsString());

1),

t->"Sorry... " + t.getMessage() + " (" + cb.state() + ")"

)

.setHandler(content ->

CIRCUIT BREAKER

VERTICLE FAIL-OVER

In High-Availability mode, verticles deployed on a node that
crashes are redeployed on a sane node of the cluster.

\

|
« %

VERTICLE FAIL-OVER

ELASTICITY
PATTERNS

Be prepared to be famous

ELASTICITY PATTERNS

Several
event loops
Vertical : 7N G

Scalability 3 X) 3 X)
Spawn
): \ \ s \ new nodes

Horizontal
Elasticity

BALANCING THE LOAD

When several consumers listen to the same address, Vert.x
dispatches the sent messages using a round robin.

So, to improve the scalability, just spawn a new node!

BALANCING THE LOAD

BALANCING THE LOAD

SCALING HTTP

THIS IS NOT THE
END();

But the first step on the Vert.x path

SAQJ &)\ Op(ut‘ﬁ TC P ;‘reafns 6@%@\? :%
7 Q g Message & %
{ DNS QV o >

S W O ,<\ ,6 e\le)

>

4+

N,

S

Q

QL

REACTIVE SYSTEMS +
REACTIVE PROGRAMMING

Reactive
“showing a response
to a stimulus’

Reactive Reactive
Programming Systems
Reactive }

The sequence of Systems using Responsiveness,
messages 1is a Reactive Resilience,
stream Programming Elasticity,

Asynchronous

- redhat | THANK You!

@vertx_project

https://twitter.com/clementplop
https://twitter.com/vertx_project

